Master stability islands for amplitude death in networks of delay-coupled oscillators.
نویسندگان
چکیده
This paper presents a master stability function (MSF) approach for analyzing the stability of amplitude death (AD) in networks of delay-coupled oscillators. Unlike the familiar MSFs for instantaneously coupled networks, which typically have a single input encoding for the effects of the eigenvalues of the network Laplacian matrix, for delay-coupled networks we show that such MSFs generally require two additional inputs: the time delay and the coupling strength. To utilize the MSF for determining the stability of AD of general networks for a chosen nonlinear system (node dynamics) and coupling function, we introduce the concept of master stability islands (MSIs), which are two-dimensional stability islands of the delay-coupling parameter space together with a third dimension ("altitude") encoding for eigenvalues that result in stable AD. We numerically compute the MSFs and visualize the corresponding MSIs for several common chaotic systems including the Rössler, the Lorenz, and Chen's system and find that it is generally possible to achieve AD and that a nonzero time delay is necessary for the stabilization of the AD states.
منابع مشابه
Amplitude death in oscillator networks with variable-delay coupling.
We study the conditions of amplitude death in a network of delay-coupled limit cycle oscillators by including time-varying delay in the coupling and self-feedback. By generalizing the master stability function formalism to include variable-delay connections with high-frequency delay modulations (i.e., the distributed-delay limit), we analyze the regimes of amplitude death in a ring network of S...
متن کاملDelay coupling enhances synchronization in complex networks
The phenomenon of enhancement of synchronization due to time delay is investigated in an arbitrary delay coupled network with chaotic units. Using the master stability formalism for a delay coupled network, we elaborate that there always exists an extended regime of stable synchronous solutions of the network for appropriate coupling delays. Further, the stable synchronous state is achieved eve...
متن کاملAmplitude death of identical oscillators in networks with direct coupling.
It is known that amplitude death can occur in networks of coupled identical oscillators if they interact via diffusive time-delayed coupling links. Here we consider networks of oscillators that interact via direct time-delayed coupling links. It is shown analytically that amplitude death is impossible for directly coupled Stuart-Landau oscillators, in contradistinction to the case of diffusive ...
متن کاملAmplitude death in networks of delay-coupled delay oscillators.
Amplitude death is a dynamical phenomenon in which a network of oscillators settles to a stable state as a result of coupling. Here, we study amplitude death in a generalized model of delay-coupled delay oscillators. We derive analytical results for degree homogeneous networks which show that amplitude death is governed by certain eigenvalues of the network's adjacency matrix. In particular, th...
متن کاملReviving oscillations in coupled nonlinear oscillators.
By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2016